NIX - Comprehensive Storage of Neuroscience Data and Metadata

Christian Kellner
LMU Munich, G-Node
kellner@bio.lmu.de

NWB Hackathon
Origins

- Generalization of NEO (http://www.neuralensemble.org/neo)
- Started in 2012 at the INCF Hackathon

- Main developers:
 - Adrian Stoewer, Programmer, G-Node
 - Jan Grewe, Neuroscientist, Uni Tübingen
 - Christian Kellner, Neuroscientist & Programmer, LMU Munich
 - Balint Morvai & Andrey Sobolev, Programmers, G-Node
Overview

- Data Model
- HDF5 Data Format
- C++ Core Library / API
- Language Bindings
- High-Level API
- Tools
Data Model

- **Flexible** model to store **raw data**, **derived data**, **relations** of the data (e.g. waveforms of spikes, ROI)

- **Core component:** **DataArray** with dimensions, units (SI)

- **Full metadata** integration (odML [1], RDF/ontologies)

- Store all necessary information to create a basic scientifically correct plot, including labels & units

- fulfils INCF Ephys Data Sharing Task Force requirements for storing electrophysiology data

https://github.com/G-Node/nix/wiki/The-Model
Data Model

Metadata Model (odML)

Data Model

Example Data

https://github.com/G-Node/nix/wiki/The-Model
File Format

- HDF5
- Structure reflects data model
- Easy to understand
 - human readable names
 - hdf5 links
 - mtime, ctime
 - version information

HDFView: can view and plot data in NIX file
NIX Library / API

- Core component
- Convenient IO API, utility functions
- Multiple backends
- C++ (modern C++11)
- 1,854 commits
- 17,069 lines of actual code
- Well documented
- Unit tested + Continuous integration
- Linux, MacOS X & Windows support
- Debian packages in a PPA, Windows binaries
- Command line tool (browse file + verification), benchmark tool
- BSD 4-clause license

https://github.com/G-Node/nix
% ./nix-bench
Performing generators tests...
Performing disk IO tests...
Performing read tests...
Performing write tests...
Performing read tests...
Performing read (poly) tests...

=== Reports ===
Double@{ 2048 1 }, G, 85.087 MB/s, 1.1152e+07 N/s
Double@{ 1 2048 }, G, 84.584 MB/s, 1.1087e+07 N/s
Double@{ 2048 1 }, O, 70.219 MB/s, 9.2037e+06 N/s
Double@{ 1 2048 }, O, 69.870 MB/s, 9.1580e+06 N/s
Double@{ 2048 1 }, I, 4687.5 MB/s, 6.1440e+08 N/s
Double@{ 1 2048 }, I, 5408.7 MB/s, 7.0892e+08 N/s
Double@{ 2048 1 }, W, 29.039 MB/s, 3.8062e+06 N/s
Double@{ 1 2048 }, W, 41.740 MB/s, 5.4710e+06 N/s
Double@{ 2048 1 }, R, 73.545 MB/s, 9.6396e+06 N/s
Double@{ 1 2048 }, R, 137.090 MB/s, 1.7969e+07 N/s
Double@{ 2048 1 }, P, 56.155 MB/s, 7.3604e+06 N/s
Double@{ 1 2048 }, P, 89.255 MB/s, 1.1699e+07 N/s

[...]
Python Bindings

- Boost.Python based
- Pythonic, IO interfaces modelled after h5py
- IO directly to NumPy arrays
- Unit tested + Continuous integration
- Linux, MacOS X & Windows support
- Helper for plotting
- Large collection of tutorials
- BSD 4-clause license

https://github.com/G-Node/nixpy
http://g-node.github.io/nixpy/tutorial.html
import nix
from utils.plotting import Plotter

open file
nix_file = nix.File.open('data.nix.h5')

open data arrays of first block
b = nix_file.blocks[0]
voltage = b.data_arrays['V-1']
spikes = b.data_arrays['spikes']

plotter = Plotter(width=1280, height=800, lines=4)
plotter.add(voltage, 0)
plotter.add(spikes, color='red')
plotter.plot()
Matlab Bindings

- Using Matlab’s C interface
- IO directly to Matlab arrays
- Early development stage
- High priority
- BSD 4-clause license

https://github.com/G-Node/nix-mx
Java Bindings

- SWIG based
- Proof-of-Concept stage
- High priority
- ImageJ plugin
- BSD 4-clause license

https://github.com/G-Node/nix-java
High-Level API

- User facing API
- Implementation at C++ level with bindings
- High-Level API for
 - Electrophysiology (work in progress, Jan Grewe),
 - Simulation (NEST),
 - Images / Image Stacks + Video Data
Usage

- RELACS (http://relacs.sourceforge.net), fully integrated for data & metadata

- Benda lab, Uni Tübingen: Ephys (field-potentials, spike data), stimulation, behaviour (video tracking)

- Felmy lab, LMU Munich: Ephys (patch clamp) + Ca-imaging

- Wachtler lab, LMU Munich: Ephys (ERG, HD-MEA), simulation; eye-tracking (in development)

- Leibold lab, LMU Munich: Ephys (tetrode), behavior

- Grün Lab, Research Center Jülich (evaluation)

- NEO (http://neuralensemble.org/neo, planned)
Outlook

- RDF/ontologies integration for metadata
- Provenance
- Julia bindings
IPython Notebooks:

- Basic usage, ‘automatic’ plotting
- RELACS data: ephys + behaviour + metadata
- NEST Simulations
- NWB datasets pvc-6, pvc-7