Utilizing e-phys data and metadata in the Neo framework

Michael Denker
Inst. of Neurosci. and Medicine (INM-6)
Jülich Research Center, Germany

Neurodata without Borders Hackathon
Janelia Farms, Ashburn, VA
20.-22. Nov 2014
Using Neo to work with e-phys data
Neo: data representations for electrophysiology

- **Neo**: data representations to support *common interface* to consumers of electrophysiological data
- Data representations in Python for the types of data commonly found in an experiment freed from specific semantics (ex: *RecordingChannelGroup*)

Garcia et al. (2014) Front Neuroinform.
• Relationships between data items: i.e., Block → Segment → AnalogSignal
• **Hierarchical** bidirectional relationships (parent ↔ child)
• Can contain references to data objects across container hierarchy
• Metadata as annotations for every Neo core object
• Designed from perspective of *data providers* and *data consumers*
Goals of Neo

• provide *a common set of base classes for neurophysiology data, to improve interoperability* between Python tools for data analysis/visualization/storage/simulation (OpenElectrophy, NeuroTools, elephant, G-Node, Helmholtz, DABBSIP, PyNN...)

• provide tools *to facilitate access* to these base classes from a programmer’s perspective (e.g., filtering the object tree, time slicing objects,...)

• prioritize *simplicity* (e.g. no data analysis methods included), *performance* (based on numpy) and *correctness* (explicit units/dimensionality checking)

• be able to read from/write to *many data formats*
Connecting software resources via Neo

Neo: evolving community standard for common to support the interoperability of software tools

Corner stone: tested and efficient *file I/O modules*

Current INM-6 activity: development of a flexible file I/O for one (soon several) of the most desired file formats
Example usage: Loading

To load a file format which is implemented in a MyFormatIO class

```python
>>> from neo.io import MyFormatIO
>>> file = MyFormatIO("myfile.dat")
```

To know what types of objects are supported by this io interface:

```python
>>> file.supported_objects
[Segment, AnalogSignal, SpikeTrain, Event, Spike]
```

Not all supported objects can be read directly. For instance, many formats supports AnalogSignal but you can’t access them directly: you must read a Segment and access your AnalogSignal like that:

```python
>>> seg = file.read_segment()
>>> seg.get_analogsignals()
```

To have the list of directly readable objects:

```python
>>> file.readable_objects
[Segment]
```

To read the entire file:

```python
>>> result = file.read()
>>> type(result)
neo.core.Segment
```
class BlackrockIO(BaseIO):
 is_readable = True
 is_writable = False
 supported_objects = [neo.Block, neo.Segment,
 neo.AnalogSignal, neo.SpikeTrain, neo.EventArray,
 neo.RecordingChannelGroup, neo.RecordingChannel]
 readable_objects = [neo.Block]
 writeable_objects = []
 has_header = False
 is_streamable = False
 read_params = {}
 write_params = {}
 name = 'Blackrock'
 description = 'This IO reads .nev/.nsX file of the Blackrock (Cerebus) recordings system.'
 extensions = ['ns' + str(_) for _ in range(1, 7)]
 extensions.append('nev')
 mode = 'file'
Example: BlackrockIO readers

def read_segment(self, n_start=None, n_stop=None, load_waveforms=False, nsx_num=None, lazy=False, cascade=True):

 """Reads one Segment.

 The Segment will contain one AnalogSignal for each channel and will go from n_start to n_stop (in samples).

 Arguments:
 n_start : time in samples that the Segment begins
 n_stop : time in samples that the Segment ends

 Python indexing is used, so n_stop is not inclusive.

 Returns a Segment object containing the data.
 """
Example usage: Working with Neo objects

```python
>>> from neo import AnalogSignal, Segment
>>> import numpy
>>> from quantities import uV, Hz

>>> data = numpy.random.uniform(size=100)*uV
>>> signal = AnalogSignal(data, sampling_rate=420*Hz)
>>> isinstance(signal, numpy.ndarray)
True

# Time keeping for analog signals:
>>> signal.t_start
array(0.0) * s
>>> signal.t_stop
array(0.1) * s
>>> signal[20:80].t_stop
array(0.08) * s

# Adding annotations:
>>> signal.annotate(cell_id="20100405a")
```
Example usage: Working with Neo objects

```
# Filtering
>>> signal2 = AnalogSignal(data+1*uV, sampling_rate=420*Hz)
>>> signal2.annotate(cell_id="20100405b")
>>> seg = Segment()
>>> seg.analogsignals.append(signal)
>>> seg.analogsignals.append(signal2)

>>> seg.filter(cell_id="20100405a")
[AnalogSignal in 1.0 uV with 100 float64 values
 annotations: {'cell_id': '20100405a'}
 channel index: None
 sampling rate: 420.0 Hz
 time: 0.0 s to 0.238095238095 s]

# Working with the object:
>>> print
   numpy.mean(seg.filter(cell_id="20100405a")[0].magnitude
) 0.545829319931
```
odML: practical experience with metadata management
Complex meta data in a behavioral experiment

Reach to grasp exp.:
- 120 trials / subsession
- ~ 5 subsessions / day
- ~ 70 days / monkey
- 3 monkeys

Neural data in:
- .2 files
- .2 formats

Zehl, Denker, Stoewer, Jaillet, Brochier, Riehle, Wachtler, Grün (in prep.)
Reach to grasp exp.:
- 120 trials / subsession
- ~5 subsessions / day
- ~70 days / monkey
- 3 monkeys

Neural data in:
- 2 files
- 2 formats

Zehl, Denker, Stoewer, Jaillet, Brochier, Riehle, Wachtler, Grün (in prep.)
odML: meta data for electrophysiological experiments

Example: Stimulus
Stimulus duration = 500.0 ms ± 0.0 ms

odML value types:
- integer
- float
- string
- URL
- text
- n-tuple
- date
- time
- boolean
- person

Value:
- data value = 500.0
- uncertainty = 0.0
- unit = ms
- type = float
- definition = duration in ms

Property:
- name = duration
- definition = duration of stimulus

Subsection:
(can contain properties and/or sub-subsections)
- name = types
- type = stimulus
- definition = stimulus types

Section:
(can contain properties and/or subsections)
- name = stimulus
- type = stimulus
- definition = contains all stimulus parameters

Root Section:
(groups all sections)
- author = Lyuba Zehl
- date = 2012-11-16
- version = 01

Grewe et al. (2011) Front Neuroinform.
odML: compiled via scripts and the editor

Code 1: How to generate an odML file in Python

```python
import odml
import datetime

# Generate an odml-document
odml_document = odml.Document(author = "Lyuba Zehl",
                              date = datetime.date(2014, 6, 1))

# Generate an odml-section
odml_section = odml.Section(name = "ElectrodeArray",
                            definition = "Information on electrodes")

# Generate an odml-subsection
odml_subsection = odml.Section(name = "Electrodes",
                                definition = "Information on electrodes")

# Generate odml-properties with their corresponding odml-value
odml_value_a = odml.Value(data = "file://home/zehl/IDScheme/100.png",
                           dtype = odml.DType.url,
                           definition = "URL to file.")

odml_value_b1 = odml.Value(data = 4.2,
                           dtype = odml.DType.float,
                           unit = "mm",
                           definition = "Array width.")

odml_value_b2 = odml.Value(data = 4.2,
                           dtype = odml.DType.float,
                           unit = "mm",
                           definition = "Array length.")

# Append all odml-objects to odml-tree
odml_section.append(odml_subsection)

# Save the odml-document with all its content
write_to = "/home/zehl/AREADNE_2014/example.odml"
odml.tools.xmlparser.XMLWriter(odml_document).write_file(write_to)
```

Improve python libraries for generation and access of meta data information

Tutorial on building successful meta data collections using odML

Accessible templates for common odML sections (e.g., common hardware) to be provided
Usage example

neo.io.blackrockio

odML

data
annotations

experiment_io:

must perform matching
Relationship to the Human Brain Project
Build, Simulate and Validate

- Workbench through web portal
- Integrated workflow
- Access to platforms
- Provenance tracking
Mitglied in der Helmholtz-Gemeinschaft

Tools for the analysis of functional data
(work package 5.3)

Standalone open source Python package

ElePhAnT

- Surrogate generation
- Spike sorting
- Spectral analysis
- Signal processing
- Spike pattern analysis
- Spike train correlation
- Spike train statistics
- Spike-triggered averaging
- Data set filtering and cutting
- Data representations
- Testing

HBP Unified Portal

Functional Data Analysis Toolkit (FDAT)

- Individual specific analysis tasks
Combining multiple tools in FDAT components

FDAT task
- Load data
- Analyse data (e.g., histogram of CVs across all spike train objects in input)
- Create output files (hdf5) and result figures (png)

NIX under consideration

URI to input file

Simple analysis parameters

Uses

Links to output files
Summary

Neo is a good target platform for implementation of a format because:

- Many file format readers already implemented, leading to easy portability
- Open source, extensible
- Provides well-structured representation of ephys data
- Provides a simple metadata annotation mechanism
- Is the basis for a variety of libraries and programs

It is not (yet) because:

- Neo is python-only
- Integration of structured hierarchical metadata and its link to primary data is not yet fully implemented/defined (e.g., information about trials) → NIX

odML-based hierarchical metadata collections

- work for large collections of metadata…
- …but lack an automatic linking mechanism between data and metadata